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BUCKLING OF LONG, REGULAR TRUSSES

J. D. RENTON

Department of Engineering Science, University of Oxford, Parks Road, Oxford OX! 3Pl

Abstract-The buckling of pin-jointed trusses due to axial end loading is examined using finite difference calculus.
Exact solutions are found from which approximate formulae are derived which may be compared with the
critical loads for analogous columns buckling due to bending and shear. These are found to differ from pre
viously proposed analogies which were established on an intuitive basis. The possibility of analogies for the
lateral buckling of trusses is also examined.

1. INTRODUCTION

ANALOGIES have previously been drawn [1] between the behaviour of pin-jointed trusses
in compression and the behaviour of columns buckling due to bending and shear. The
author has previously shown [2] that the deflexions of laterally loaded trusses are closely
related to the bending and shear deflexions of beams. The method used avoids the common
intuitive approaches but relies instead on the rigorous derivation of a differential equation
for the truss from exact finite difference equations for a typical truss module. In this paper,
these finite difference equations will again be formed, allowing for large axial forces in the
bars. Taking skew-symmetrical end conditions, sinusoidal deflexion modes can be found,
leading to expressions for the critical axial loading. If the wavelength is taken as large in
comparison with the module size, then these expression$ reduce to forms which may be
compared with the expression for the critical load of a column, buckling due to bending
and shear. These are similar but not identical to the previous intuitive expressions [1].

An examination is also made of the lateral buckling of rigid-jointed plane trusses. This
is done by taking the axial force in any member to be small in comparison with its Euler
buckling load, since overall buckling of the truss is sought rather than the local buckling
of individual members. Livesley's [3] stability functions can then be expressed by truncated
expansions in terms of the axial load. Assuming large, equal and opposite axial forces in
the upper and lower chords of the truss and skew symmetrical end conditions, a buckling
mode can again be found. This leads to a comparison between the resulting expression for
the buckling load with that for the lateral buckling of beams in pure bending.

2. THE MEMBER STIFFNFSS EQUATIONS

The relationship between the end loads and deflexions of a member arising from
incipient buckling will now be considered. The initial compression force P in the member
will be large in comparison with these end loads and the second order effects which this
force produces will be included.
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FIG. I
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If the member of a plane frame is pin-ended, Fig. 1, and has a length / Young's modulus
E and cross-sectional area A, the relationships between the in-plane end forces Fx1 ' Fx2 '
FY1 and FY2 and the corresponding end displacements bx1 ' bx2 ' bY1 and bY2 are

[
FX1] = [E: _:] IbXl] + [_ E: :] [b

X2
] ,

FY1 0 I lbY1 0 I bY2

[
FX2] [- E: ;] [b

X1
] + [E: _:] [b

X2
] .

FY2 0 I bY1 0 / bY2

If the member co-ordinates x, yare at an anticlockwise angle (X to an overall set of co
ordinates x·, y. the above matrices can be related to the overall system using the trans
formations

[F:i] = [c~sa -sin a] [FXi], [b Xi] = [_ c~sa sin a] [b:i], (3)
FYi SID a cos (X FYi bYi SID a cos a bYi

where F~i' F;j, b~j and b;i (i = 1 or 2) are the end forces and displacements in the directions
of the overall co-ordinates.

If the member is part of a rigid-jointed frame, then its flexural and torsional behaviour
must be taken into account. The relevant flexural stiffness of a member will be denoted
by E/ and its torsional stiffness by GJ. In order to obtain stiffness matrices which are
linear functions of the axial compression P, Livesley's stability functions will be expanded
in powers of P, taking only the first two terms. Then

1 p[2
cP2 = 1- 60 E/ ;

1 p[2
cP4 = 1+60 E/ ;

1 P/2

cP3 = 1-30 E/ ;

1 P/2

cP5 = 1- 10 E1'

(4)

The maximum error involved in using these simplified expressions in the range of P be
tween ±40 per cent of the pin-ended Euler buckling load (or ± 10 per cent of the fixed
ended buckling load) is 0·9 per cent. If, for example, they are used to determine the lowest
in-plane buckling load of a rectangular portal frame with all members equal and equal
axial forces in the stanchions, the critical axial forces are found to be 7·01 E///2 • This com
pares well with the exact answer of7·38 E//[2.
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In this article, only the out-of-plane buckling of plane rigid-jointed frames will be
considered. The plane of the frame will again be taken as the xy plane shown in Fig. 2.
The end moment induced by buckling are Mxl ' Myp M X2 and MY2 and the corresponding
rotations are ()xl' ()Yl' ()x2 and ()y2' End forces FZ1 and FZ2 also arise and the corresponding
end displacements are 8z1 and 8z2 ' Taking the y and z planes to be planes of symmetry
of the member's cross-section, and ignoring the small effect of axial force on torsional
stiffness, the stiffness relationships between the above end loads and deflexions are

where

[M'J [1 0 o 1[9'JM Y1 = 0 41(P-2p) -6(P- p) ()yl

FZ1 0 -6(P- p) 12(P - 6p)/1 8Z1

r
l1 0

o f"J+ 0 21(P+ p) 6(P - p) ()y2 '

0 -6(P-p) -12(P-6p)/1 8z2

[M"J [-~
0 0

1[9"JM Y2 21(P+p) - 6(P - p) (}Yl

FZ2 6(P-p) -12(P-6p)/1 8z1

[11 0

°f"J
+ 0 41(P-2p) 6(P-p) (}Y2'

0 6(p-p) 12(P - 6p)/1 8z2

(5)

(6)

P= El/12
; y = GJ/12

; p = P/60. (7)

If the member co-ordinates x, yare at an angle IX to an overall set of co-ordinates x·, y.
the transformation matrices in this case are

[M~iJ [cos IX - sin IX OJ [MXiJ [()XiJ [cos IX sin IX OJ [()~iJM;i = sin IX cos IX 0 M~i' ()y: -sin IX cos IX 0 ()~' (8)

F z• 0 0 1 F.. 8.. 0 0 1 (5..
where the end forces and displacements in terms of the overall co-ordinate system are
marked with an asterisk and i is 1 or 2.

Stiffness equations for either type of truss can now be formed in the usual manner,
using the conditions of joint equilibrium and compatability of joint deflexions.
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3. THE FINITE DIFFERENCE OPERATORS

The upper and lower joints will each be numbered from left to right and the joint
deflexions taken as functions of the joint number. The operator E will be taken to produce
a step to the right in the joint number. Thus if X is some general joint number and f(X)
a function of it, then

More generally,

Ef(X) = f(X + 1).

ENf(X) = f(X + N),

(9)

(10)

where N in the present paper may be a positive or negative integer or fraction. The symbol
Q will also be used where

(11)

These operators can be expanded using Taylor's series so that ifa unit step in X corresponds
to an increase of }, in x,

N d (N}.)2 d2 (NA)" dn
E = 1+NJ.-

d
+-2- -d2·· .+-- -d' (12)

x x n! xn

[
A2 d2 A4 d4 A2n d2n J

Q= -2 2 dx2+4!dx2···+2n!dx2n . (13)

Sinusoidal buckling modes will be examined so that the effect of these operators on
sinusoidal functions needs to be known. For example

EN sin(kX +ct) = sin(kX +kN +ct), (14)

Q sin(kX + ct) = 2 sin(kX + ct) - sin(kX + k + ct) - sin(kX - k + ct)

= 2(1-cos k) sin(kX +ct). (15)

4. IN-PLANE BUCKLING OF PRATT AND HOWE TRUSSES

Figure 3 shows part of a regular, pin-jointed Pratt or Howe truss. The axial stiffness
(EA/l) for the top and bottom bars will be taken as equal to t, those of the diagonal bars
as equal to d and those of the vertical bars as equal to v. Further quantities will now be

(1:1,
SIX!

"'TI21ZII17['"
P/2 P/2L A-l tW(XI

UIX!

FIG. 3.
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defined in terms of these and the angle rx of the diagonal bars:
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e = d cosz rx; r=tanrx; r = t/e; v = v/erz ; (16)

Taking half the total axial force P to be acting in the top bars and half to be acting in the
lower bars, the stiffness equations for the equilibrium of the upper and lower joints, when
no external forces act on these joints, can be written as

1+rf5] -1 -1 Eb' 0

v+1-pf5] -1 -Ev-1 rEw' 0
(17)

-1 -1 1+rf5] b 0

-1 -E- lv-1 v+1-pf5] rw 0

where b' and w' are the horizontal and vertical displacements of a typical lower joint, b
and ware the corresponding displacements of the upper joint. This equation may be
compared with equation (8) of Ref. [2].

For joint deflexions to occur without external joint loads, (apart from the axial com
pression), the determinant of the above matrix operating on a representative displacement
function <jJ(X) must be zero, giving

(18)

Equation (18) is the necessary condition for a nonzero solution to exist. Such an equation
has been used previously (7) to solve the torsional-flexural buckling equations.

The condition

(19)

is satisfied by

(20)

The particular solutions corresponding to the case when C and D are both zero cor
respond to rigid-body movements of the truss and axial compression. These can be written
in the form

Eb' = A l +BlX;

b = A 3 +B3X;

rEw' = Az+BzX;

rw = A 4 +B4 X.
(21)

The coefficients Ai and Bi are to some extent related by equation (17). For a rigid-body
movement V in the direction of band b', V in the direction of wand w' and on anticlock
wise rotation e about a point on the middle line of the truss at the origin,

A l = V-He/2;

Az = rV+He;

A 3 = V+He/2; B l = B3 = 0;

A 4 = rV; Bz = B4 = He.
(22)

The complete solution of equation (20) also allows an internal end moment and shear
force to be applied, also without external loads on the intermediate joints.

The remaining solutions of equation (18) result from the operation of the terms inside
the curly brackets on <jJ(X) giving zero. Suppose that <jJ(X) has a general sinusoidal form
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given by A sin(kX +a). Then from equations (15) and (18), <P<X) is nonzero if

where Pc is the critical load at which this waveform becomes possible and e is I-cos k.
The deflexions Elf, rEw', [) and rw can be expressed in terms of functions of the form
Ai sin(kX +a j ), where i takes the integer values 1-4. Relationships between the coefficients
can be established by substituting these functions into equation (17). A particular solution
of interest here is given by

[)' = - A cos 1tA.(X _1)
L 2'

1( ') A(2 + re) . 1tA. . 1tA.
W m = '2 w+w = sm-

2
sm-X,

per L L

I( ') -A(1 +re) 1tA.(X I)
'2 w - w = r cos L + '2 ,

(24)

(25)

(24)

(25)

where Wm is the displacement of the middle line of the truss and k takes the value 1tA/L.
An expression for the bending moment M produced about the middle line can be obtained
from the above results and is given by

(26)

taking a hogging moment as positive. This solution gives the displacement of the middle
line of the truss and the bending moment about the middle line as zero at x equal to zero
and L. These conditions correspond to analogous pin-ended conditions and the above
solution is possible provided that equation (23) is satisfied for the value of e corresponding
to k equals 1tA/L.

Instead of using the exact result given by equation (23), a simplifying approximation
can be made which produces a form comparable with earlier results. Since L » )" k will
be small so that approximately

(27)
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using the first three terms in the expansion of cos k. Equation (23) can be expanded by
means of the binomial theorem using the condition that c is small, leading to an expression
for the lowest critical load

where

[

7[2EI* (r2 1 {I}) 1]1+-- -+-+ - -
L 2 v e 6t .A.r2 '

EI* = t.A.H2/2,

(28)

(29)

is the bending stiffness of an imaginary beam formed by the two chords. This result agrees
with that obtained by Engesser [4] apart from the last term, shown in curly brackets, which
results from the second term in the expansion for c given by equation (27)

5. IN-PLANE BUCKLING OF CROSS-BRACED TRUSSES

A typical cross-braced truss is shown in Fig. 4. Since it is redundant, the proportion of
the total axial force carried by the chord members (top and bottom bars) is affected. For
this reason, the vertical bars cannot be ignored as suggested by Timoshenko [1].

t III (X I

UXI
p p:TI><lXIX[:
2 l- >. ----J rl: l 2

6'(XI

FIG. 4.

The notation used in the previous section, equation (16) will again be used except that
instead of p, the compressive forces in the chords, diagonals and vertical bars will be
expressed by f .A.r2, ghec3

0( and - hn respectively. These can be found in terms of the
total axial force P by strain energy methods for example, giving

f= [~+£Jh;er v

(
tr2 t)

h = P/2.A. 1+--;-+e . (30)
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The stiffness matrix equation is found by the same method used in the previous section
and equating its determinant operating on ¢ to zero gives

t(5J +h 0 -h (e+g)(E-I-E)

+2(e-gr2
) -(e-gr2 )(E +E- I)

v v
- !(5J+- -?r 2

0 +2(e-gjr2
) (e+g)(E-I-E) -(e - gjr2 )(E+E- I)

-h (e+g)(E-E- 1) t(5J +h 0
</> = O. (31 )

-(e-gr2 )(E+E- I) +2(e-gr2
)

(e+g)(E-E- 1
)

v v
-? - !(5J+-

r 2

-(e-gjr2 )(E+E- 1 ) 0 +2(e-gjr2
)

Equations (14) and (15) can again be used, assuming a sinusoidal buckling mode, and the
above determinant reduces to a product of two quadratic expressions in terms of the
axial force. The lowest critical load predicted by these expressions is

where

B = e(2-C)+se(I-C)+ct( 1-1 :rz);

C = ects;

(32)

(33)

The approximation in equation (32) is possible when L » ). so that C is much smaller
than A and B, permitting the use of a short binomial expansion. Using this result in con
junction with equation (27) then gives

nZE1*/LZ

Pc ~ --------------
s n

Z
E1* [1 e ] 1

1+2+-L~z- -2-+-s --12-t(4+ 5s) -).e-rz

(34)

where E1* is again defined by equation (29). Taking the particular case when the stiffness
of the battens, v, is zero the above equation reduces to

(35)
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This corresponds to the result given by Timoshenko [IJ who assumes that the effect of
the battens can be neglected. It agrees with his result apart from the term in curly brackets
which results only in part from the second term in the expansion for c (equation 27).

6. IN-PLANE BUCKLING OF WARREN TRUSSES

Figure 5 shows part of a typical Warren truss axially loaded by force P. Being statically
determinate, the analysis of this truss follows the same lines as that given in Section 4.
Using the notation given by equation (16), the stiffness matrix equation can be written as

2+rD 0 -(Et+E-t) (E-t -Et) b' 0

0 2-pD (E-t-Et) -(Et+E-t) w'r 0

-(Et+E-t) (Et-E-t) 2+ rD 0 b 0
(36)

(Et -E-t) -(Et+E-t) 0 2-pD wr 0

As before, the buckling load is found from the condition that the determinant of this
matrix, operating on a sinusoidal displacement function, is zero.

The exact solution for this case is particularly simple and the lowest critical load is
given by

P = 2e_r,.-2A_[_1_-_co---::s_(1t_A_/2_L---,-)J----,.--:--::-
c l-cos(1tA/L)+e/t[1 +cos(1tA/2L)J

In the case when the diagonals are infinitely stiff, this result becomes

1t
2
EI* (4L 1tA) 2

Pc =~ 1tA tan 4L '

(37)

(38)

which coincides exactly with the result obtained by von Mises and Ratzersdorfer [5] for
this case.

tw(X)

UIX)
p p

:~:
O'(X·1/2)

FIG. 5.
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Using the methods of approximation outlined earlier, equation (37) becomes

P = rr;
2
EI* [1 +rr;2EI*(~_ {~})_1J.

c L2 e e 3t lr2 (39)

This again corresponds with the expression proposed by Timoshenko [lJ except for the
tetm in curly brackets. As in Section 5, this term results only in part from the expansion
given by equation (27).

7. OUT-OF-PLANE BUCKLING OF A WARREN TRUSS

The question of whether the lateral buckling of trusses is in any way analogous to that
of beams will now be examined. Figure 6 shows a rigid-jointed Warren truss loaded by
equal and opposite forces P in its two chords. These can be taken as the primary forces

FIG. 6.

resulting from a large, uniform bending moment M equal to PH applied to the truss. The
form of the matrix equations for such problems was discussed in Section 2 and the re-
sulting stiffness matrix equation for a typical unit of the truss is given by

a 0 h j k -I e' 0x
0 c d k m -n e' 0y

b -d e I n q ()~/A 0
(40)

J k a 0 -b ex 0

k m n 0 c* d* ey 0

-1 -n q -b -d* e* ()z/l 0



where
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(41)

a = YclSl+4pdsino:tanO:+Ydcoso:;b = I2Pdsino:;

e = 2pc(6-lSl)+ 2p(6+ lSl) + 4Pd cos O:+Yd sin 0: tan 0:;

d = 6(Pc + p)(E - E- 1
); e = I2lSl(Pc + 6p)+48Pd cos 0:;

j = (Pd sin 0: tan 0: - tYd cos 0:)(E- 1+ 1);

k = sino:(Pd+!Yd)(E-1-I);[ = 6Pdsino:(E-1+1);

rn = (Pd cos IX-!Yd sin IX tan 0:)(E- 1+ 1);

n = 6Pd cos IX(E- 1-1); q = - 24Pd cos IX(E- 1+ 1),

the notation of equation (7) being used where the subscripts e and d refer to the chord
and diagonal members respectively, a barred term indicates that E- 1 is replaced by E
and a starred term indicates that p is replaced by - p.

A possible buckling mode for such a truss is again given by taking sinusoidal ex
pressions of equal wavelength for each of the deflexions. These expressions will be physically
in phase except those for ()~ and ()y which will be nl2 out of phase with the rest. Again,
such a mode can be chosen to fit skew-symmetrical boundary conditions L apart, provided
for example by vertical roller bearings, and leads to the lowest value of the critical moment
when L is half a wavelength.

The general result is extremely complex and only a particular case will be considered
here. All the members will be taken to have equal lengths and bending stiffness EI and
their torsional stiffnesses assumed to be negligible. The exact expression for the critical
moment is then given by

(42)

(43)

where

A = 24 + 28e + lOe2 + e3
;

B = 14625 - 2286e - 907e2
- 28e3

;

C = 30e + 17e2 +2e3
;

e = I-cos nAIL.

Again using the expansion for e given by equation (27) and the binomial theorem, the
above result can be written as

(44)

However, the expression for the critical moment of a beam with lateral bending stiffness
EI*, torsional stiffness GJ*, nonuniform torsional stiffness EK* and length L is

M = ~(EI*GJ*)t[I EK* n
2 Jt. (45)

c L + GJ* L 2

Comparing equations (44 and 45) term by term would require the postulation of a negative
equivalent stiffness. This turns out to be unhelpful, since it leads to imaginary terms in
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the expressions for other lateral buckling loads. At best then, it is possible to compare the
first order results given by ignoring the last term in each equation, leading to a value for
an equivalent EI*GJ*. If this equivalence holds good for the problem of the lateral buckling
of a cantilever subject to an end shear force Pc at the tip, the result for the truss should be

(46)

Computer results for such cantilevered Warren trusses have been found (6) and fit
very closely to straight lines on graphs of log Pc plotted against number of bays in the
cantilever. For example, the line fitting the results for an end load Pc on the upper chord
of such a truss is

Pc ~ 7·85EI/U. (47)

As might be expected from energy considerations, the values of Pc are higher when it acts
at the end of the lower chord, so that for the computer results found, equation (46) gives a
safe estimate of Pc.

8. CONCLUDING REMARKS

A generally applicable method of finding approximations to the buckling loads of
long trusses has been given. Slight corrections to earlier results for the in-plane buckling
of pin-jointed trusses have been found, but the first order (bending) terms shown to be
usually correct. An analogy between the lateral buckling of beams and trusses has been
investigated and it was shown that, at best, only a first order analogy could be established.
Exact results for the above problems were also given although, as a rule, these proved to
be more difficult to apply.
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PeJIOMe-\lIc'll1cJleHl1eM KOHe'lHOH pa3HI11..lbll1CCJleAyeTclI Kopo6J1eHl1e <I>epM C Wnl1J1e'lHbIMI1 COeAI1HeHl1l1MI1

BCJlet\CTBl1e HarpyJKH Ha oceBOH KOHel!. [lOJlY'IHJlH TO'lHble peWeHl1l1 Ha KOTOpbIX nOCTpOHJlH upH6J1HlKeHHble

<I>OPMYJlbI, KOTopble MOlKHO cpaBHHTb c MOD.eJlllMH KOJlOHH, nOKopo6J1eHHblX BCJleD.CTBHe H3rH6a H CABHra.

HaWJlH, 'ITO OHH OTJlH'IaIOTClI OT npelKD.e npeD.JlOlKeHHbIX aHaJlOrHH, KOTopble 6bIJlH YCTaHOBJleHbl Ha

I1HTYHTHBHOM OCHOBaHHH. TaKlKe paCCMaTpHBaeTCll B03MOlKHOCTb nOnepe'lHOrO 111rl16a <I>epM.


